

University of Pretoria Yearbook 2024

Formal aspects of computing (I) 440 (COS 440)

Qualification	Undergraduate
Faculty	Faculty of Engineering, Built Environment and Information Technology
Module credits	15.00
NQF Level	08
Prerequisites	COS 301 and at least two COS modules at third-year level.
Language of tuition	Module is presented in English
Department	Computer Science
Period of presentation	Semester 1 or Semester 2

Module content

The focus of this module is on a formal approach to deriving algorithms, known as "correctness by construction". It relies on Dijkstra's guarded command language (GCL) for specifying the derived algorithms. The requirements of an algorithm are initially stated in terms of a pre- and a post-condition, specified in first order predicate logic. Strategies are given for progressively refining these specifications to GCL notation which can, in turn, easily be translated into a conventional programming language. The surprising power of the method will be demonstrated. Not only are algorithms guaranteed to be correct (in the same sense that the proof of a mathematical theorem is guaranteed to be correct); they frequently turn out to be remarkably efficient. In the early part of the module, a number of well-known algorithms (such as linear and binary search, raising a number to an integer power, finding the approximate log of a number, etc) will be derived in order to become thoroughly familiar with the approach. Later various intermediate level algorithms will be derived (such as simple raster drawing algorithms, pattern matching algorithms, finding the longest string of a certain type, an algorithm to solve the majority voting problem, etc). Finally, the method will be used to derive state-of-the-art algorithms to minimize finite automata and to construct formal concept lattices. The theory necessary to understand these topics will be provided. The value-objectives of the module are: to develop an appreciation that theory can be effectively deployed to solve practical problems; to value the elegance of the algorithmic solutions; and to value a correctness-by-construction mindset over one that is content with debugging into correctness. A basic understanding is assumed of first order predicate logic, as well as competency in mathematical reasoning.

General Academic Regulations and Student Rules

The General Academic Regulations (G Regulations) and General Student Rules apply to all faculties and registered students of the University, as well as all prospective students who have accepted an offer of a place at the University of Pretoria. On registering for a programme, the student bears the responsibility of ensuring that they familiarise themselves with the General Academic Regulations applicable to their registration, as well as the relevant faculty-specific and programme-specific regulations and information as stipulated in the relevant yearbook. Ignorance concerning these regulations will not be accepted as an excuse for any transgression, or

basis for an exception to any of the aforementioned regulations. The G Regulations are updated annually and may be amended after the publication of this information.

Regulations, degree requirements and information

The faculty regulations, information on and requirements for the degrees published here are subject to change and may be amended after the publication of this information.

University of Pretoria Programme Qualification Mix (PQM) verification project

The higher education sector has undergone an extensive alignment to the Higher Education Qualification Sub-Framework (HEQSF) across all institutions in South Africa. In order to comply with the HEQSF, all institutions are legally required to participate in a national initiative led by regulatory bodies such as the Department of Higher Education and Training (DHET), the Council on Higher Education (CHE), and the South African Qualifications Authority (SAQA). The University of Pretoria is presently engaged in an ongoing effort to align its qualifications and programmes with the HEQSF criteria. Current and prospective students should take note that changes to UP qualification and programme names, may occur as a result of the HEQSF initiative. Students are advised to contact their faculties if they have any questions.